

Synthesis of 1'-β-D-glucopyranosyl-1,2,3-triazole-4,5-dimethanol-4,5-bis-(isopropylcarbamate) as potential antineoplastic agent

Najim A. Al-Masoudi^{a,*} and Yaseen A. Al-Soud^b

^aFakultät für Chemie, Universität Konstanz, Postfach 5560, D-78457 Konstanz, Germany ^bDepartment of Chemistry, College of Science, University of Al al-Bayt, Al-Mafraq, Jordan

Received 13 February 2002; accepted 11 April 2002

Abstract—The title compound 5 was prepared from the 1-β-D-azido-glucose 1 via four steps. Alternatively, 5 was synthesized from 1, via acetalation, cycloaddition with acetylene derivative, reduction, then carbamoylation followed by an acid hydrolysis. © 2002 Elsevier Science Ltd. All rights reserved.

Recent studies showed that some carbamates, such as 5-aryl-2,3-dihydropyrrolo[2,1-*b*]thiazole-6,7-dimethanol-6,7-bis(isopropylcarbamates)¹ and the bis(carbamate) derivatives of 4,5-bis(hydroxymethyl)imidazoles² exhibited in vitro potential activity against HL-60 human leukemia and HT-29 human colon carcinoma cells as well as antineoplastic activities. These findings and in

vitro antileukemic activity of 1-aryl-1,2,3-triazole-4,5-dimethanol-4,5-bis(isopropylcarbamates)³ encouraged us to synthesize the nucleoside analogue as a potential antineoplastic agent.

The title compound 4,5-bis(carbamate) 5 was synthesized from the glucose azide 1 via two routes with

Scheme 1. Reagents and conditions: (a) AC_2O -pyr., rt, 24 h; (b) HOH_2C -C \equiv C-CH $_2OH$ -toluene-pyr. 9:1, reflux, 18 h; (c) Me_2CHNCO , $Sn(Bu)_2(OAc)_2$, rt, 4 h; (d) K_2CO_3 -MeOH, rt, 18 h; (e) Me_2CO -DMP-pTSA, rt, 30 min; (f) DHP-H $^+$, rt, 16 h; (g) MEO_2C -C \equiv C-CO $_2Me$, 80°C, 24 h; (h) LAH, dry ether, rt, 18 h; (i) pTSA, rt, 18 h.

0040-4039/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(02)00733-5

^{*} Corresponding author. E-mail: najim.al-masoudi@uni-konstanz.de

diverse yields. Cycloaddition of 2,4 prepared from 1, with 2-butyn-1,4-diol in a mixture of toluene/pyridine (9:1) under reflux for 18 h afforded, after chromatography, the crystalline triazole 3⁵ in 38% yield. The carbamoylation³ of 3 with isopropyl isocyanate was carried out in the presence of Sn(Bu)₂(OAc)₂ as a catalyst² in CH₂Cl₂ at rt for 4 h to give, after purification, 46 (72%) as crystals, mp 157–160°C. Deblocking of 4 with K₂CO₃ in MeOH at rt for 18 h afforded, after purification, the crystalline 5⁷ in 73% yield. Alternatively, 5 was prepared from 1 via six steps. Thus, acetalation of 1 with a mixture of acetone/dimethoxypropane (3:1) in the presence of ptoluenesulphonic acid at rt furnished 6 in 76% yield. The hydroxyl groups of 6 were protected with tetrahydropyran⁸ in the presence of p-toluenesulphonic acid and gave 7 as a crystalline material in 81% yield. The gluco azide 7 and dimethyl acetylenedicarboxylate were heated in toluene at 80°C for 24 h to give 8 (61%), which was reduced³ to the alcohol **9** on treatment with LAH in dry ether (48%). Carbamoylation of 9 afforded the crystalline 10 in 67% yield. Acid hydrolysis of 10 furnished 5 in 76% yield (Scheme 1).9 The anticancer activity of 5 is under evaluation.

Acknowledgements

We thank Miss A. Friemel and Mr. K. Hägele, Fakultät für Chemie and der Universität Konstanz, Germany, for the NMR experiments and the mass spectra measurements, respectively.

References

 Lalezari, I.; Schwartz, E. D. Med. Chem. 1988, 31, 1427– 1429.

- Anderson, W. K.; Bhattacharjee, D.; Houston, D. M. J. Med. Chem. 1989, 32, 119–127.
- 3. Lalezari, I.; Gomez, L. A.; Khorshidi, M. *J. Heterocyclic Chem.* **1990**, *27*, 687–689.
- 4. Bertho, A. Ber. Dtsch. Chem. Ges. 1930, 63, 841-843.
- 5. de las Heras, F.; Alonso, R.; Alonso, G. *J. Med. Chem.* **1979**, *22*, 496–501.
- 6. Selected spectroscopic data of **4**: ¹H NMR (CDCl₃): δ 7.35 (br, 1H, NH); 6.13 (d, 1H, $J_{1',2'}=9.3$ Hz, H-1'); 5.95 (t, 1H, $J_{2',3'}=9.3$ Hz, H-2'); 5.41 (t, 1H, $J_{3',4'}=9.4$ Hz, H-3'); 5.34 (s, 4H, 2CH₂); 5.25 (t, 1H, $J_{4',5'}=9.5$ Hz, H-4'); 4.31 (dd, 1H, $J_{5',6'}=4.8$ Hz, H-6'); 4.12 (dd, 1H, $J_{6',6''}=12.6$ Hz, H-6"); 4.03 (dt, 1H, $J_{5',6''}=2.8$ Hz, H-5'); 3.54 (m, 2H, CH); 2.07, 2.05, 2.03, 1.90 (4s, 12H, 4×OAc); 1.05 (d, 6H, 2CH₃); 0.92 (d, 6H, 2CH₃). ¹³C NMR (CDCl₃): 170.3, 170.1, 169.1, 168.5 (4OAc); 159.7, 158.3 (C=O); 140.1 (C-4); 130.7 (C-5); 85.5 (C-1'); 75.1 (C-5'); 73.1 (C-3'); 69.5 (C-2'); 67.3 (C-4'); 61.3 (C-6'); 58.1, 54.1 (2CH₂); 50.1, 49.2 [CH(Me)₂]; 20.7, 20.6, 20.5, 20.3 (4OAc); 10.8, 10.6, 9.2, 8.5 [CH(Me)₂].
- 7. Selected spectroscopic data of 5: ¹H NMR (DMSO- d_6/D_2O): δ 5.97 (d, 1H, $J_{1',2'}=9.5$ Hz, H-1'); 5.19 (s, 4H, 2CH₂); 4.01 (t, 1H, $J_{2',3'}=9.5$ Hz, H-2'); 3.69 (dd, 1H, $J_{5',6'}=4.6$ Hz, H-6'); 3.65 (m, 2H, 2CH); 3.44 (dd, 1H, $J_{6',6''}=12.0$ Hz, H-6''); 3.34 (dt, 1H, $J_{5',6''}=3.0$ Hz, H-5'); 3.33 (t, 1H, $J_{3',4'}=9.4$ Hz, H-3'); 3.23 (t, 1H, $J_{4',5'}=9.5$ Hz, H-4'); 1.37 (d, 6H, 2CH₃); 0.89 (d, 6H, 2CH₃). ¹³C NMR (DMSO- d_6/D_2O): δ 163.2, 158.4 (C=O); 139.3 (C-4); 132.6 (C-5); 86.3 (C-1'); 80.2 (C-5'); 77.1 (C-3'); 71.8 (C-2'); 69.6 (C-4'); 60.6 (C-6'); 57.0, 54.5 (2CH₂); 48.8, 47.9 [CH(Me)₂]; 10.5, 10.2, 9.7, 9.0 [CH(Me)₂].
- 8. Uesugi, S.; Kaneyasu, T.; Matsugi, J.; Ikehara, M. *Nucleosides Nucleotides* **1983**, *2*, 373–385.
- All new compounds were purified by column chromatography characterized by ¹H NMR (600 MHz, HMQC, COSY, ROESY), ¹³C NMR and mass spectroscopy and gave correct elemental analysis.